MATH 54 - MIDTERM 2

PEYAM RYAN TABRIZIAN

Name:

Instructions: This midterm counts for 20% of your grade. You officially have 110 minutes to take this exam. Good luck, and don't worry, you'll be fine!

1		10
2		20
3		10
4		10
5		10
6		10
7		5
8		10
9		8
10		5
11		2
Bonus		4
Total		100

Date: Friday, July 13th, 2012.

1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}. Write your answers in the box below!

NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) If A is a $m \times n$ matrix, then $\operatorname{dim}(\operatorname{Nul}(A))+\operatorname{Rank}(A)=m$
(b) The change-of-coordinates matrix P from \mathcal{B} to \mathcal{C} has the property that $[\mathbf{x}]_{\mathcal{B}}=P[\mathbf{x}]_{\mathcal{C}}$
(c) If $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$, then $\operatorname{Nul}(T)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
(d) The set of polynomials \mathbf{p} in P_{2} such that $\mathbf{p}(3)=0$ is a subspace of P_{2}
(e) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}

(a)	
(b)	
(c)	
(d)	
(e)	

2. (20 points, 5 points each) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!
(a) The set of matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ is a subspace of $M_{2 \times 2}$.
(b) The matrix of the linear transformation T which reflects points in \mathbb{R}^{2} about the x-axis and then about the y-axis is the same as the matrix of the linear transformation S which rotates points in \mathbb{R}^{2} about the origin by 180 degrees counterclockwise.
(c) The following set is a basis for $P_{2}:\left\{1,1+t, 1+t+t^{2}\right\}$
(d) If V is a set that contains the 0 -vector, and such that whenever \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u}+\mathbf{v}$ is in V, then V is a vector space!

Note: Read the instructions on the previous page, they will be taken more seriously this time!
3. (10 points) For the following matrix A, find a basis for $\operatorname{Nul}(A)$, $\operatorname{Row}(A), \operatorname{Col}(A)$, and find $\operatorname{Rank}(A)$:

$$
A=\left[\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
1 & 2 & -4 & 10 & 13 & -12 \\
1 & -1 & -1 & 1 & 1 & -3 \\
1 & -3 & 1 & -5 & -7 & 3 \\
1 & -2 & 0 & 0 & -5 & -4
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
0 & 1 & -1 & 3 & 4 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

4. (10 points) Let $\mathcal{B}=\{7-2 t, 2-t\}$, and $\mathcal{C}=\{4+t, 5+2 t\}$ be bases for P_{1}.

Calculate $[\mathbf{x}]_{\mathcal{C}}$ given $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$.
Hint: First calculate a change-of-coordinates matrix!
5. (10 points) Define $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by:

$$
T(A)=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right] A
$$

Find the matrix of T relative to the basis:

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text { of } M_{2 \times 2}
$$

6. (10 points) Define $T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ (the space of infinitely differentiable functions from \mathbb{R} to \mathbb{R}) by:

$$
T(y)=y^{\prime \prime}-5 y^{\prime}+6 y
$$

(a) (5 points) Show that T is a linear transformation
(b) (5 points) Find a basis for $\operatorname{Ker}(T)$ (or $\operatorname{Nul}(T)$ if you wish). Show that the basis you found is in fact a basis (i.e. is linearly independent and spans $\operatorname{Ker}(T)$)!

Note: This is a tiny bit longer than you think!

54/Math 54 Summer/Exams/Chicken.jpg

Note: If you don't get it, the right-hand-side is Colonel Sanders (which sounds like Kernel) :)
7. (5 points) Find the largest open interval (a, b) on which the following differential equation has a unique solution:

$$
(x-3) y^{\prime \prime}+(\sqrt{x}) y^{\prime}=\sqrt{x-1}
$$

with

$$
y(2)=3, y^{\prime}(2)=1
$$

8. (10 points) Solve the following differential equation:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+12 y^{\prime}-10 y=0
$$

9. (8 points) Solve the following differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 t}
$$

(a) (4 points) Using undetermined coefficients
(b) (4 points) Using variation of parameters
10. (5 points)
(a) (1 point) If $T: V \rightarrow W$ is a one-to-one linear transformation and $T(\mathbf{x})=\mathbf{0}$, what can you say about \mathbf{x} ?
(b) (4 points) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors (in $V)$ and $T: V \rightarrow W$ is a one-to-one linear transformation. Show that $T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{w})$ are also linearly independent.

Hint: Use (a)!!!
Let me start the proof for you:
Suppose $a T(\mathbf{u})+b T(\mathbf{v})+c T(\mathbf{w})=\mathbf{0}$.
We want to show that $a=b=c=0$

Note: You can actually use this problem to show that if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^{3} and A is an invertible matrix, then $\{A \mathbf{u}, A \mathbf{v}, A \mathbf{w}\}$ is also a basis for \mathbb{R}^{3}. This provides a neat way of creating new bases for \mathbb{R}^{3} : Start with any old basis $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ for \mathbb{R}^{3}, then $\{A \mathbf{u}, A \mathbf{v}, A \mathbf{w}\}$ is a (usually) a new basis for \mathbb{R}^{3}.
11. (2 points) What is the basis of your happiness? :)

Bonus. (4 points) In this problem, we're going to use the Wronskian to find the general solution of a quite complicated differential equation! This should illustrate yet again the power of the Wronskian!
(a) Consider the differential equation:

$$
y^{\prime \prime}+P(t) y^{\prime}+Q(t) y=0
$$

Recall the definition of the Wronskian (determinant):

$$
W(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{2}^{\prime}(t) y_{1}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

Where y_{1} and y_{2} solve the above differential equation.

By differentiating $W(t)$ with respect to t, find a simple differential equation satisfied by $W(t)$ and solve it.

Note: You answer will involve the \int sign!

Note: From now on, ignore the constants, i.e. in your answer in (a), set $C=1$
(b) From (a), we get:
$y_{2}^{\prime}(t) y_{1}(t)-y_{2}(t) y_{1}^{\prime}(t)=$ \qquad (your answer from (a))

Solve for y_{2} in terms of y_{1}.
Hint: Divide this equality by $\left(y_{1}(t)\right)^{2}$ and recognize the left-hand-side as the derivative of a quotient, and hence solve for y_{2} in terms of y_{1}. You answer will involve another \int sign!

Note: Again, ignore the constants!
(c) Let's apply the result in (b) to the differential equation:

$$
y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0
$$

(here $P(t)=-\tan (t), Q(t)=2$)
One solution (by guessing) is given by $y_{1}(t)=\sin (t)$.
Use your answer in (b) to find another solution $y_{2}(t)$!
Note: Again, you can ignore the constants!
Hint: You should use the following facts, in order:

1) $\int \tan (t) d t=-\ln (\cos (t))$
2) At some point, multiply your integrand (the fct you're integrating) by $\frac{\cos (t)}{\cos (t)}$
3) The substitution $u=\frac{1}{\sin (t)}$
4) The formula $\frac{u^{2}}{1-u^{2}}=\frac{1}{1-u^{2}}-1=\frac{1}{2(1-u)}+\frac{1}{2(1+u)}-1$
5) The function $\operatorname{coth}^{-1}(z)=\frac{1}{2} \ln \left|\frac{1-z}{1+z}\right|$
6) Try to have a formula without $\frac{1}{\sin (t)}$ (see how you can simplify the stuff inside the \ln)
(d) Notice that the equation $y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0$, although quite complicated, is still linear. What is the general solution of $y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0$? (no need to show your work here)
(Scratch work)
(Scratch work)

Any comments about this exam? (too long? too hard?)

